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It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger
�NLS� equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation
with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions.
In the suggested reduction the original coordinates in the �1+3� space are mapped into a set of one-parametric
coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We
describe the algorithm of finding solutions and concentrate on power �linear and nonlinear� potentials present-
ing a number of case examples. Generalizations of the method are also discussed.
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I. INTRODUCTION

The nonlinear Schrödinger �NLS� equation is a key model
describing wave processes in weakly dispersive and weakly
nonlinear media �1�. It has numerous physical applications
and this universality stimulates a great deal of attention de-
voted to search of exact solutions of the generalized NLS
models which include coefficients depending on spatial and
temporal variables, i.e., describing wave dynamics in inho-
mogeneous media. The first exact results were obtained for
the one-dimensional �1D� NLS equation using the inverse
scattering technique �2� and later on generalized for the re-
spective discrete models �3� and to NLS with random coef-
ficients �4�. Applications of the NLS equation in fiber optics
have stimulated further studies of the integrable inhomoge-
neous models leading to the concepts of self-similar solitons
and nonautonomous solitons put forward in Ref. �5�.

Very recently the interest in exact solutions of the NLS
equations with inhomogeneous coefficients was stimulated
by its applications in the mean-field theory of Bose-Einstein
condensate �BEC�, where it is also known as Gross-
Pitaevskii equation �6�. Except a few special cases �7�, the
inhomogeneous NLS equation in the BEC applications ap-
pears to be nonintegrable, either due to its two- or three-
dimensional nature or in quasi-1D approximation due to the
respective inhomogeneous terms �such as parabolic poten-
tials and nonlinear inhomogeneities�. Therefore approaches,
based on the self-similar transformations, have been devel-
oped. In particular, exact solutions in 1D NLS equations with
stationary inhomogeneous coefficients were constructed in
Refs. �8–10�, solutions of the NLS model with coefficients
depending on time and space variables were considered in
�11,12�. A d-dimensional NLS equation with varying coeffi-

cients was considered in �13�, where the lens transformations
allowed for its reduction to the d-dimensional model with
constant coefficients, whose dynamical properties are
known. Nontrivial solutions of the cubic-quintic NLS equa-
tion with a periodic potential were also considered in �14�.
The solutions of the cubic-quintic NLS model with coeffi-
cients depending on time and space variables were addressed
in �15�.

The present paper aims to report a possibility of generat-
ing exact solutions of a generalized three-dimensional �3D�
NLS equation with inhomogeneous coefficients employing
the self-similar reduction. Unlike in the previous studies we
implement reduction in the spatial dimension of the system.
More specifically we consider the mapping of the coordinate
surfaces in the 3D space into a one-parametric family, where
the quantity parameterizing the surface family serves as a
variable of the 1D NLS equation with constant coefficients,
thus allowing for immediate indication of a great number of
exact solutions.

The solutions we will obtain have nontrivial phases, thus
representing the hydrodynamic flows in specially created po-
tentials. Bearing this in mind and taking into account that the
explored potentials �parabolic and quartic� are typical for the
BEC applications, we refer to such solutions also as to �ex-
act� flows and employ the terminology widely accepted in the
BEC theory.

The paper is organized as follows. In Sec. II, we describe
the similarity transformation. In Sec. III, we focus on the
amplitude and phase surfaces associated to the introduced
transformations and present stationary solutions. Sec. IV is
devoted to time-dependent cases. In Sec. V, we study the
generalizations of the theory, including reduction to the 1D
equations with inhomogeneous coefficients but allowing for
exact solutions. The outcomes are summarized in the conclu-
sion.
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II. SIMILARITY REDUCTIONS AND SOLUTIONS

A. Similarity reduction

We concentrate on the 3D inhomogeneous p-q NLS equa-
tion with varying coefficients

i
��

�t
= −

1

2
�2� + v�r,t�� + �gp�r,t����p−1 + gq�r,t����q−1�� ,

�1�

where ����r , t�, r�R3, ����x ,�y ,�z�, and q� p�3 are
integers, the linear potential v�r , t� and the nonlinear coeffi-
cients gp,q�r , t� are all real-valued functions of time and spa-
tial coordinates. This model contains many special types of
nonlinear equations with varying coefficients such as the cu-
bic NLS equation, the cubic-quintic NLS model, the gener-
alized NLS model, etc.

Following the procedure suggested in �11,16� we search
for a transformation connecting solutions of Eq. �1� with
those of the stationary p-q NLS equation with constant co-
efficients

�� = − ��� + Gp���p−1� + Gq���q−1� . �2�

Here ������ is a function of the only variable �
���r , t� whose relation to the original variables �r , t� is to
be determined, � is the eigenvalue of the nonlinear equation,
and Gp,q are constants. Since both �Gp� and �Gq� can be scaled
out �by the proper renormalization of the amplitude, of �,
and of the “coordinate” ��r , t�� without loss of generality the
consideration will be restricted to the cases where Gp
=0, �1 and Gq=0, �1.

In order to control the boundary conditions at the infinity
we impose the natural constraints

� → 0 at r → 0 and � → � at r → � . �3�

Thus we consider the general similarity transformation

��r,t� = 	�r,t�ei
�r,t�����r,t�� , �4�

where 
�r , t� is a real-valued function and 	�r , t� is a non-
negative function of the indicated variables, the both are to
be determined. Requiring ���� to be real �without loss of
generality� and to satisfy Eq. �2�, we substitute the ansatz �4�
into Eq. �1� and after simple algebra obtain the set of equa-
tions

� · �	2 � �� = 0, �5a�

�	2�t + � · �	2 � 
� = 0, �5b�

�t + �
 · �� = 0, �5c�

2gj�r,t�	 j−1 − Gj����2 = 0 �j = p,q� , �5d�

2v�r,t� + �����2 + ��
�2 − 	−1�2	 + 2
t = 0. �5e�

These equations lead to several immediate conclusions. First,
it follows from Eq. �5d� that gp,q�r , t� are sign definite, and
Gj =sign�gj�r , t��. Moreover, comparing the equations in Eq.
�5d� for j= p and j=q we find that either �gp�=	q−p�gq�, or one

of the nonlinear coefficients is zero, i.e., either �gp��0 or
�gq��0. Respectively, we define the function g�r , t�
�2gj	

j−1 /Gj, where j= p ,q.
To solve the system �5� explicitly, we first consider the

special case of 	�r , t� depending only on time t, i.e., 	�r , t�
�	�t�. Then the system �5� is simplified

�2� = 0, �6a�

2	t + 	�2
 = 0, �6b�

�t + �
 · �� = 0, �6c�

g�r,t� − ����2 = 0, �6d�

2v�r,t� + �����2 + ��
�2 + 2
t = 0. �6e�

As it is clear, the equations in the system �6� are not
compatible with each other in the case of arbitrary linear and
nonlinear potentials. One however can pose the problem to
find functions v�r , t� and g�r , t�, for which the mentioned
system becomes solvable. This leads us to the procedure
which can be outlined as follows.

First, one solves Eqs. �6a�–�6c� �or Eqs. �5a�–�5c�� subject
to the boundary conditions Eq. �3� what gives the functions
��r , t� and 
�r , t�.

Second, one considers Eqs. �6d� and �6e� �or Eqs. �5d�
and �5e�� as definitions for the functions v�r , t� and g�r , t�
through the already known ��r , t� and 
�r , t�.

Third, using one of the known solutions of the stationary
p-q NLS Eq. �2� and the similarity transformation �4� one
can construct the analytical solutions of Eq. �1�.

The last step is trivially performed, taking into account
that � is real, giving a solution in the implicit form

� =	 d�
C − ��2 +
2Gp

p + 1
�p+1 +

2Gq

q + 1
�q+1�−1/2

, �7�

where C is an integration constant.
In the next sections we implement the describe approach

for a number of particular cases, relevant to the physical
applications. Before that, however, we briefly address the
issue of the integrals of motion.

B. One integral of motion

Integrals of motion generally appear to be the most im-
portant characteristics �either physical or mathematical� of
the motion. The simplest conserved quantity for an L2 inte-
grable solution of the NLS equation—the number of par-
ticles, for the whole space is not defined in the case at hand,
since the solutions we are dealing with do not decay at the
infinity. Instead, however, as it is customary for the classical
hydrodynamics dealing with flows we define a number of
particles in a simply connected bounded volume U�R3

which consists of the same “particles” and thus moves with
the “fluid” described by the NLS Eq. �1�, i.e., U�U�t�
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NU = 	
U�t�

���r,t��2dr . �8�

Under the term particles we understand an infinitesimal vol-
ume of the fluid moving with the velocity v��
. Then, the
solutions considered in the present paper possess the proper-
ties of the conservation of NU

dNU

dt
= 0. �9�

This formula represents nothing else than the well-known
transport formula of the conventional hydrodynamics �17�.

In order to prove Eq. �9� we first observe that it follows
from Eqs. �1� and �4� that

�

�t
���2 = − ���	��2 � 
� . �10�

This equation combined with the transport formula, results in
the set of equalities

d

dt
	

U�t�
���2dr = 	

U�t�

 �

�t
���2 + �����2 · v��dr

= 	
U�t�


 �

�t
���2 + ���	��2 � 
��dr = 0.

�11�

In spite of the apparent complexity of the solution �4�, the
obtained conservation of the number of particles in a mate-
rial volume moving with the fluid, does not appear too sur-
prising. Indeed, one can take into account that the symme-
tries of the system used to construct the solutions are based
on reduction to the stationary model �2�.

III. SURFACES AND STATIONARY SOLUTIONS

We start with the stationary solutions of Eq. �1�, 	t=�t
=
t=0, imposing even more strong constrain on 	 requiring

it to be r-independent constant. Then without loss of gener-
ality we set 	=1. Also now the linear and nonlinear poten-
tials do not depend on time t, i.e., v�r , t��v�r� and g�r , t�
�g�r� �recall that now it is mandatory to have g�r��0�.

Introducing the notation u�r��−2v�r�−�g�r� we rewrite
the system Eq. ��6�� in the stationary case as

�2� = 0, �2
 = 0, � � · �
 = 0, �12a�

����2 = g�r�, ��
�2 = u�r� . �12b�

It follows from the second of Eq. �12b� that u�r��0, and
hence one must require v�r��− 1

2�g�r�.

A. Amplitude and phase surfaces. The potentials

Now we consider surfaces of the constant amplitude and
phase, i.e.,

��r� = �0 = const and 
�r� = 
0 = const. �13�

First, we observe that the only singular points of the ampli-
tude surfaces occur where the system becomes linear, i.e.,
where g�r�=0 since otherwise ���r��0. Next, having de-
fined one of the surfaces �we will always start with the co-
ordinate surface�, the last equation in Eq. �12a� appears to be
an important constraint of the definition of the other surface
�in our case it will be the phase surface�.

In fact, the first two equations in Eq. �12a� imply that the
amplitude ��r� and phase 
�r� belong to the kernel L
= �f�r� ��2f�r�=0� of the Laplace operator �2, which are the
harmonic functions and form a function space in R. It fol-
lows from the last equation in Eq. �12a� that the dot product
of the gradients of amplitude ��r� and phase 
�r� is to zero.
That is to say, ��r� and 
�r� are harmonic functions and their
gradients are orthogonal.

In what follows we restrict our consideration to the finite
power �N order� surfaces, i.e., depending on terms like
xn1yn2zn3 with nj being finite positive integers such that
max�n1+n2+n3�=N��. This allows us to list in the Table I
all admissible coordinate and phase surfaces which appear to

TABLE I. Admissible coordinate and phase surfaces and the respective linear and nonlinear potentials. To
reduce the number of constants, those that can be scaled out by change in the coordinate units are set to one.
All the constants left are real.

Case Amplitude surface Phase surface Linear potential v�r� Nonlinear potential g�r�

I ��r�=c ·r 
�r�=a ·r −���c�2+ �a�2� /2 �c�2

�plane, �c��0� �plane, �a��0, c ·a=0� �constant� �constant�
II ��r�=x+c�y2−z2� 
�r�=2ayz −2��c2+a2��y2+z2�−� /2 4c2�y2+z2�+1

�hyperbolic paraboloid� �hyperbolic cylinder� �elliptic cylinder� �elliptic cylinder�
III ��r�=cx2+ �1−c�y2−z2 
�r�=2axyz −2��c2x2+ �1−c�2y2+z2� 4�c2x2+ �1−c�2y2+z2�

�hyperboloid of one �c� �0,1�� �third-order surface� −2a2�y2z2+x2z2+x2y2� �real ellipsoid�
or two �c�1� sheets and �fourth-order surface�
hyperbolic cylinder �c=1�

IV ��r�=xyz 
�r�=a1x2+a2y2−a3z2 −��y2z2+x2z2+x2y2� /2 y2z2+x2z2+x2y2

�third-order surface� �similar to ��r� in the −2�a1
2x2+a2

2y2+a3
2z2� �fourth-order surface�

Case III, a3=a1+a2� �fourth-order surface�
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be not higher than the third order, i.e., N�3 �the second and
third columns, respectively�. The number of surfaces is lim-
ited by the irreducible cases, i.e., to the surfaces that cannot
be transformed to each other by proper change of the coor-
dinates leaving the Laplacian invariant. In all the cases the
stationary phase is set zero. Notice that if the phase 
�r� is
chosen as a constant, then Eq. �12a� is reduced to the single
Laplace equation �2��r�=0 for the amplitude ��r� whose
solutions are just the harmonic functions �in what follows we
will not consider them�.

All solutions shown in Table I describe irrotational flows:
�v�r�=0 where as above v�r�=�
�r�. Another feature to
be emphasized is that the coordinate and phase surfaces, are

defined by the linear part of the evolution equation �i.e., by
the linear dispersion relation of the medium�. They generate
linear and nonlinear potentials. In practice however this pic-
ture is inverted: for a given linear and nonlinear potentials
�created, say, experimentally� one has to introduce an appro-
priate coordinate surface. In this last sense the two last col-
umn in the Table I indicate the types of the linear and non-
linear potentials for which the mapping �x ,y ,z�→� is
possible. Namely, we observe that all the obtained solutions
require specific quadratic and quartic linear and nonlinear
potentials �v�r� ,g�r��.

The case I in Table I describes a flow with the constant
velocity v�r�= �a1 ,a2 ,a3� which is generated by the constant
nonlinearity and linear potentials �the latter, obviously, can
be removed�. This is the trivial case of line solutions, which
by simple rotation of the coordinates are reduced to solutions
depending only on one coordinate �say, x� and independent
on other coordinates. In what follows will not consider them.

The case II in Table I describes flows which are outgoing
in the first and third quadrants in the �y ,z� plane and incom-
ing in the second and forth quadrants, with respect to the x
axis �see Fig. 1�a��. The velocity is given by v�r�
= �0,2az ,2ay�. Such flows are generated by the parabolic
linear �either repulsive or attractive� and parabolic nonlinear
potentials. Being symmetric they preserve the total number
of particles.

The case III in Table I is a 3D flow with the velocity
v�r�= �2ayz ,2axz ,2axy�, which is generated by the quartic
linear and quadratic nonlinear potentials �see Fig. 1�b��. In
each coordinate plane, i.e., �x ,y�, �x ,z�, and �y ,z� plane, they
all describe outgoing in the first and third quadrants, and
incoming in the second and forth quadrants, flows.

The case IV in Table I is a 3D flow with the velocity
v�r�= �2a1x ,2a2y ,−2�a1+a2�z�, which is generated by the
quartic linear and quartic nonlinear potentials �see Fig. 1�c��.

In all the cases the types of the nonlinear interactions are
determined by the constants Gp,q: they are attractive at Gp,q
�0 and repulsive at Gp,q�0. Meantime the linear potential,
which depends on the chemical potential is related to the
type of the solution �as the different types of the solutions
exist for different signs of �, see below�. For ��0 the linear
potentials can change the sign of their curvatures in different
points of the space.

B. Solutions: cubic NLS equation

Following the algorithm described above, in order to con-
struct the exact solutions of Eq. �1�, as the last step we have

FIG. 1. �Color online� The velocity fields v=�
 corresponding
to the phases listed in Table I for a=a1,2=1. �a� �y ,z� plane for case
II, �b� 3D space for case III, �c� 3D space for case IV.

FIG. 2. �Color online� Cross-sections of the density distribution
of the “bright soliton” ��bs�r��2 with � given in Table I for �=−1.
�a� c=1 with � for case II, �b� c=0.5 with � for case III; here the
cross-section at z=0 shows the peak intensity, �c� � for case IV.
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to address solutions of Eq. �2� �i.e., the formula �7��. They
depend on the particular choice of the model. In the present
work we consider two the most relevant physical cases. First
we concentrate on the standard cubic NLS equation and after
that we make comments on the cubic-quintic model. Thus
starting with the case p=3, gq�r��0, and hence Gq=0 we
have to deal with the NLS equation ��=−���+G3�3. The
respective periodic and localized solutions are very well
known. Below we consider the simplest ones for attractive
and repulsive nonlinearities G3.

1. Attractive nonlinearity G3=−1

Now the simplest stationary nontrivial solution is the
NLS bright soliton, which gives �bs�r�
=�−2� sech��−���r��exp�i
�, where ��0 and the ampli-
tude ��r� and phase 
�r� are defined by Table I. In Fig. 2, we
display the cross-sections of the intensity ��bs���r���2 of the
bright soliton solution for different types of amplitude sur-
faces ��r� given in Table I. We emphasize that while we use
the solitonic terminology referring to the bright solitons, the
respective solutions are not decaying in the 3D case we are
interested in as this is illustrated by Fig. 2 �this comment on
the usage of the 1D terminology is also relevant to all other
solutions considered below�.

We also observe that the described solutions allow for
direct generalization to the p-NLS case of arbitrary even p
�4 and Gq=0 for which Eq. �2� becomes ��=−���

+Gp�p. The bright soliton solution of Eq. �1� obtained from
Eq. �7� corresponds to Gp=−1 and �=−4�2�p−1�−2 and is
given by �pbs�r�= � ��2�p+1�

p−1 sech����r���2/�p−1�ei
�r�, where �
is a constant.

Next we address the solutions of the 3D model �1� gener-
ated by the periodic cn-wave solution of the cubic NLS
equation

�cn�r� =� 2�k2

1 − 2k2cn
� 2�

1 − 2k2��r�,k�ei
�r�, �14�

where k� �0,1� is the modulus of the Jacobi elliptic function
and � satisfies the condition ��1−2k2��0, i.e., ��0,
1 /�2�k�1 or ��0, 0�k�1 /�2. As before the amplitude
surface ��r� and phase surface 
�r� are defined by Table I.
Examples of the mentioned solutions are shown in Fig. 3.

There are two features of the solutions to be emphasized
here. First, being periodic in � the solutions are not periodic
in the real 3D space. However as the “trace” of the period-

icity, in Fig. 3 one observes repeated domains of maxima and
minima of the density, unlike in Fig. 2, where in each cross-
section one observes only one curve corresponding to the
maximum of the density �which follows the projection of the
amplitude surface on the plane of the chosen cross-section�.

2. Repulsive nonlinearity G3=1

This is the case where � is positive. Now one has the dark
soliton solution of Eq. �1�: �ds�r�
=�� tanh��� /2��r��exp�i
�r��. The respective intensity
profiles ��ds�r��2 are represented in Fig. 4 for different types
of amplitude and phase surfaces from Table I.

Now the linear potential is repulsive in the whole space
and in center of coordinates the density becomes zero �see
Fig. 4�b��.

One can also construct “periodic” sn-wave solutions

�sn�r� =� 2�k2

1 + k2sn
� �

1 + k2��r�,k�ei
�r� �15�

where we use the periodic sn-wave solution of the NLS
equation with a positive chemical potential �. These solu-
tions are depicted in Fig. 5,

For other possible types of the exact flows generated by
the of cubic NLS equations see, e.g, �18�.

C. Solutions: cubic-quintic NLS equation

Now we briefly discuss the cubic-quintic NLS equation,
i.e., p=3, q=5 for which Eq. �2� becomes ��=−���

+G3�3+G5�5. Its solutions for the condition G3G5�0 are
also known �some nontrivial examples are listed in Table III
given in Appendix; for the methods of construction of the

FIG. 3. �Color online� Cross-sections of the density distribution
of the cn-wave solution ��cn�r��2 with � given in Table I for �=
−1. �a� c=1 with � for case II, �b� c=0.5 with � for case III, peak
intensity at the center is shown by the cross-section at z=0, �c� �
for case IV. In all the panels k=0.8.

FIG. 4. �Color online� Cross-sections of the density distribution
of the “dark soliton” ��ds�r��2 with � listed in Table I for �=2. �a�
c=1 with � for case II, �b� c=0.5 with � for case III, the minimum
intensity is shown in the cross-section with z=0, �c� � for case IV.

FIG. 5. �Color online� Cross-sections of the density distribution
of the sn-wave solution ��sn�r��2 with � given in Table I for �=2.
�a� c=1 with � for case II, �b� c=0.5 with � for case III, the
minimum intensity is shown in the cross-section at z=0, �c� � for
case IV. In all the panels k=0.8.
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solutions see also Refs. �18,19� for more details�. While the
amplitude and the phase surfaces are now the same as in the
case of the cubic NLS equation, the density distribution is
described by different periodic and localized functions. We
in particular emphasize possibility of the algebraic solutions,
such as the ones given by the cases 4 and 7 in Table III.

IV. TIME-DEPENDENT AMPLITUDES, PHASE
SURFACES, AND POTENTIALS

So far we have considered stationary solutions. Now we
allow 	�r , t�, ��r , t�, and 
�r , t� to depend on spatial and
temporal variables. As before we focus on the finite power
surfaces, i.e., depending on terms like fn1n2n3

�t�xn1yn2zn3 with
nj being finite positive integers such that max�n1+n2+n3�
=N�� and fn1n2n3

�t� being functions on time t. In what fol-
lows we consider all admissible coordinate and phase sur-
faces which appear to be not higher than the third order, i.e.,
N�3.

A. Plane surface depending on time

The first nontrivial result is obtained for moving plane
surfaces �which in the stationary case was reduced to the
trivial 1D case�. To this end, based on the case I of the Table
I and Eqs. �6a�–�6c� we consider � parameterizing moving
plains

��r,t� = c�t� · r �16�

where c�t�= �cx�t� ,cy�t� ,cz�t�� is an arbitrary vector functions
of time t subject to the only constraint cx�t�cy�t�cz�t��0 for
any positive time t�0 �this constraint, as well as similar
conditions below are imposed only for the sake of simplic-
ity�. The nontrivial phase now reads


�r,t� = r�̂�t�r + a�t� · r �17�

where we have introduced the diagonal time-dependent 3

3 matrix �̂=diag��x ,�y ,�z� with ��=−ċ��t� / �2c��t��
�hereafter �=x ,y ,z� and a�t�= �ax�t� ,ay�t� ,az�t�� is a time-
dependent vector function such that the condition c�t� ·a�t�
=0 is satisfied. Now, from Eqs. �6d� and �6e� we obtain
	�t�=�cx�t�cy�t�cz�t�,

v�r,t� = rÂ�t�r + b�t� · r −
1

2
���c�t��2 + �a�t��2� ,

and g�r , t�= �c�t��2. Here we have defined the diagonal time-

dependent 33 matrix Â=diag�Ax ,Ay ,Az� with the entries

A� =
c̈��t�

2c��t�
−

ċ�
2�t�

c�
2�t�

, �18�

and the vector function b�t�= �bx ,by ,bz� with

b� =
ċ��t�a��t�

c��t�
− ȧ��t� . �19�

The described solution can be realized using the time-
dependent linear potential. The nontrivial effect arising in
such a geometry is that the phase surface becomes of the

second order and thus the solution at hand is characterized
by the inhomogeneous in space and dependent on time ve-
locity field.

B. Paraboloid depending on time

Next we consider the generalization of the parabolic case
II from the Table I for which the amplitude ��r , t� and the
phase 
�r , t� are as follows

��r,t� = cx�t�x + cy�t��y2 − z2� , �20�


�r,t� = r�̃�t�r + a�t�yz , �21�

where as before cx,y�t� and a�t� are functions of time such
that cx�t�cy�t��0, and we have introduced the diagonal time-

dependent 33 matrix �̃=diag��x ,�y /2,�z /2�. Now, we
have 	�t�=�cx�t�cy�t�, and the linear and nonlinear potentials
given by

v�r,t� = rÃ�t�r + by�t�yz −
�

2
cx

2�t� ,

g�r,t� = cx
2�t� + 4cy

2�t��y2 + z2� ,

where by�t� is given by Eq. �19�, and we have introduced the

diagonal time-dependent 33 matrix Ã=diag�Ax ,Cy
−cx

2 /2,Cy −cx
2 /2� with Ax and C� being defined by Eq. �18�

and

C� =
2c��t�c̈��t� − 3ċ�

2�t�
8c�

2�t�
− 2�c�

2�t� , �22�

respectively.
Like in the previous case we observe that temporal evo-

lution of the curves leads to change in the phase surface,
whose position becomes x dependent �cf. the case II in Table
I�.

C. Hyperboloid depending on time

Here we consider the generalization of the hyperbolic
case III from Table I for which the amplitude ��r , t� and
phase 
�r , t� are of the forms

��r,t� = rĉ�t�r , �23�


�r,t� =
1

2
r�̂�t�r + a�t�xyz , �24�

where as before c��t� and a�t� are functions of time t such
that cx�t�cy�t�cz�t��0, and the condition

Tr ĉ�t� = 0, �25�

is required. Moreover we have introduced the diagonal time-
dependent 33 matrix ĉ=diag�cx ,cy ,cz�. Now we have
	�t�= �cx�t�cy�t�cz�t��1/4, and the nonlinearity g�r , t� and po-
tential v�r , t� are given by

g�r,t� = 4rĉ�t�r , �26�
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v�r,t� = rĈ�t�r − �a�t�Tr �̂�t� + ȧ�t��xyz

+
1

2
a2�t��y2z2 + x2z2 + x2y2� . �27�

D. Third-order surface depending on time

Finally we consider the time-dependent generalization of
the third-order surface in case IV from the Table I for which
the amplitude ��r , t� and phase 
�r , t� are as follows

��r,t� = c�t�xyz , �28�


�r,t� = râ�t�r , �29�

where as before c�t� and a��t� are functions of time t such
that cx�t��0 and the condition

ċ�t� + 2c�t�Tr â�t� = 0, �30�

is required. Here we have introduced the diagonal time-
dependent 33 matrix â=diag�ax ,ay ,az�. Now 	�t�=�c�t�,
the nonlinearity g�r , t� and potential v�r , t� are as follows

g�r,t� = c2�t��y2z2 + x2z2 + x2y2� , �31�

v�r,t� = rD̂�t�r −
�

2
c2�t��y2z2 + x2z2 + x2y2� , �32�

where D̂=diag�Dx ,Dy ,Dz�� with D�=−ȧ��t�−2a�
2�t�. Thus

the presented temporal dependence does not increase the or-
ders of the potentials: both the linear and nonlinear potentials
are quartic.

V. GENERALIZED SIMILARITY REDUCTIONS
AND SOLUTIONS

A. Extension of the reduction equation

The approach developed in the previous sections allows
for further generalizations. Indeed, it was based on the re-
duction in 3D models to 1D NLS equations which admit
exact solutions. The latter however need not necessarily be
equations with constant coefficients. They can have either
linear and/or nonlinear inhomogeneous coefficients, how-
ever, still admitting exact solutions. Such situations are well
known, for example for the case of periodic coefficients
�8,9�, which can be constructed using the “inverse engineer-
ing” described in �9�, and for localized and more sophisti-
cated spatial dependencies �10�. Respectively, one can con-
sider reductions of an 3D model to an inhomogeneous 1D
equation with known solutions.

This leads us to the goal of this subsection: we intend to
reduce Eq. �1� to the stationary p-q NLS equation with the
�-modulated potentials V��� and Gp,q���

�� = − ��� + V���� + Gp������p−1� + Gq������q−1� ,

�33�

where ������ is a function of the only variable �
���r , t� whose relation to the original variables �r , t� is to

be determined, and � is the eigenvalue of the nonlinear equa-
tion.

We still consider the general similarity transformation Eq.
�4�. Insertion of Eq. �4� into Eq. �1� and requirement that
���� satisfies Eq. �33� yield a set of nonlinear partial differ-
ential equations, which for the amplitude and phase surfaces
coincide with previously obtained ones Eqs. �5a�–�5c�, and
for the linear and nonlinear potentials acquire the generalized
form

gj�r,t� =
1

2
	1−jG j�������2 �j = p,q� ,

v�r,t� =
1

2
��V��� − ������2 − ��
�2 + 	−1�2	� − 
t,

�34�

Now we can obtain the analytical solutions of Eq. �1� from
those of Eq. �33� in terms of similarity transformation �4�
and the corresponding ��r , t� and 
�r , t� given in Secs. III
and IV.

Passing to examples we restrict the consideration to the
cubic case Gq�0 and p=3 and make two observations. First,
being interested in flows, i.e., in solutions with varying
phases and choosing a periodic linear potential V��� in a
form of the elliptic function V���=−V0 sn2��� ,k�, where V0
and � are constants, and k� �0,1� is the elliptic modulus,
one can construct 3D solutions using the respective 1D prob-
lems intensively studied in the literature �see e.g., �8,9��.

Second, a set of the solutions can be generated by the
choice of the linear potential in the form

V��� = �4�2 − �2G3���Hn
2����e−�2�2

, �35�

where � and � are constants, G3��� is an arbitrary function
of �, and Hn���� is a Hermite polynomial �20�, then one
obtaines the Hermite-Gaussian solution of the nonlinear cu-
bic Eq. �33�

���� = �Hn����e−�2�2/2, � = �2�2n + 1� . �36�

The described solution allows for direct generalization to the
p-NLS case of arbitrary even p�4 and Gq=0 for which Eq.
�33� becomes

�� = − ��� + V���� + Gp������p−1� �37�

whose Hermite-Gaussian solution is of the form Eq. �36�
with �=�2�2n+1� and the chosen linear potential reads
V���=�4�2−�p−1Gp���Hn

p−1����e�1−p��2�2/2.

B. Generalized stationary reductions

The assumption that � is given by the expression �7�,
does not necessarily requires that 	�r� is a constant �as this
has been assumed in Sec. III�. Including the coordinate de-
pendence in the definition of 	 represents another way of
generalizing the results obtained above. The respective re-
sults are obtained directly from the Eqs. �5a�–�5c�, giving
that now 	�r�=�1 / f���� where f��� is an arbitrary function
having positive derivative, f��df /d��0 and � is given by
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one of the cases listed in the Table I. Now � is obtained from
the expression �7�, where � is substituted by �̃= f���. More-
over, the corresponding phase 
 is as in the stationary case
�see the Table I�. This leads to the obvious modifications of
the linear and nonlinear potentials directly following from
Eqs. �5d� and �5e� �or Eq. �34��.

Inversely, since the Eqs. �5a�–�5c� for the amplitude and
phase surfaces are symmetric for 	t=�t=
t=0, for a given
	�r�=�1 / f��
�, one can hold the same amplitude surfaces,
as in the stationary case �see the Table I�, with the phase
being chosen as 
̃= f�
�. Subsequently, this also leads to the
obvious modifications of the linear and nonlinear potentials
directly following from Eqs. �5d� and �5e� �or Eq. �34��.

C. Generalized time-dependent reductions

In addition, if we consider the general case 	�r , t� in Eq.
�4� depending on both time t and space r, then based on Eqs.
�5a�–�5c� we can obtain the general amplitude ��r , t�, the
phase 
�r , t� and 	�r , t� listed in Table II, for which the cor-
responding general linear and nonlinear potentials, i.e.,
gj�r , t� and v�r , t�, can be obtained from Eq. �34�. Notice that
the obtained ��r , t� ,	�r , t� ,v�r , t� and gj�r , t� all contain new
arbitrary function ����r , t��, but the corresponding phases

�r , t� have no change which are the same as ones in Sec. IV.
Therefore the similarity transformation �4� containing the ar-
bitrary function ����r , t�� and solutions of Eq. �33� will lead
to the abundant new solution profiles of Eq. �1�.

VI. CONCLUSIONS

In the present work we have shown that a large diversity
of 3D NLS equations with coefficients depending on time

can be mapped by the proper similarity transformation into
1D models allowing for exact solution. In such reductions
the original coordinates in the 1+3 space are reduced to the
set of one-parametric coordinate surfaces, whose parameter
plays the role of the coordinate of the 1D equation. When the
obtained equation allows for exact solutions, the respective
solutions of the original 3D model can be constructed imme-
diately using different types of the admissible coordinate sur-
faces.

We considered power surfaces, which give origin to para-
bolic and quartic linear and nonlinear potentials. Such poten-
tials are typical for the physical applications in the nonlinear
optics and in the mean-field theory of Bose-Einstein conden-
sates, what determines the large range of the possible appli-
cations of the found solutions, as well as of the method itself.

We also point out that not only the exact solutions itself
represent the major interest. As the 3D equation is reduce to
the 1D model one can consider the existence of the solutions
of the original model on the basis of the known existence of
the reduced equation. So, for example, 1D NLS equations
with periodic linear and nonlinear potentials �21� or with a
parabolic linear �22� potential allow for existence of various
branches of the solutions �which however can be found only
numerically�. Each of the branches can be parameterized by
the frequency �or energy, or chemical potential, depending
on the applications�, and this leads to a parametric set of the
3D NLS equations with inhomogeneous potentials allowing
for either localized or periodic solutions. In addition, the
reported method can be also extended to the 3D �or
d-dimensional� p-q NLS equation �or coupled p-q NLS
equations� with varying potentials, nonlinearities, disper-
sions, and gain/loss terms �13,23–25�.

TABLE III. Solutions for the case cubic-quintic NLS equation �k�2=1−k2�

Case G3 G5 � �2 ����

1 1 −1 3�4k2+1� / �64k2� 3 / �16k2� 3 /8�1+cn��� ,k��1/2

2 1 −1 −2 3/2 �7 cos�����9−7 cos2�����−1/2

3 1 −1 �2�2k2−1� /2−5 /4 �2�1−2k2�+�4�1−2k2�2+45� /6

�10k cn���,k�
�3�2�2 + 6k2 − 3� − 10k2 cn2���,k��1/2

4 1 −1 0 1 �6�4+3�2�−1/2

5 −1 1 3�k2−5� /64 3/16 3 /8�1+k sn��� ,k��1/2

6 −1 1 −�2�k2+1� /2+5 /4 �−2�1+k2�+�4�1+k2�2+45k�4� / �6k�4�

�10k sn���,k�
�6�2k�4 + 9�k2 + 1� − 10k2 sn2���,k��1/2

7 −1 1 1/4 1 ��24+2�2�−1/2

TABLE II. Admissible �r , t�-modulated amplitude and phase surfaces and 	�r , t� ����� being an arbitrary
differentiable function�

Case Amplitude surface Phase surface 
�r , t� is given by Function 	�r , t�

i ��r , t�=����, �=c�t� ·r Equation �17� with c�t� ·a�t�=0 �cx�t�cy�t�cz�t� /�����
ii ��r , t�=����, �=cx�t�x+cy�t��y2−z2� Equation �21� �cx�t�cy�t� /�����
iii ��r , t�=����, �=cx�t�x2+cy�t�y2+cz�t�z2 Equation �24� with Eq. �25� �4cx�t�cy�t�cz�t� /��2���
iv ��r , t�=����, �=cx�t�xyz Equation �29� with Eq. �30� �cx�t� /�����
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We however, left open several relevant questions. Among
them we mention the stability of the obtained solutions
which hardly can be implemented with the framework of a
general scheme, similar to one used to obtain the solutions.
We also did not discuss the relation between the self-similar
flows obtained in the present paper and collapsing solutions,
for which the similarity transformation �usually referred to as
lens transformation� appears to be a powerful tool �26�. The
complexity of this last issue is determent by the presence of
inhomogeneous end even time-dependent linear an nonlinear
potentials, requiring further detail study.
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APPENDIX

For the sake of convenience here we present several exact
solutions of the cubic-quintic NLS Eq. �2� with p=3, q=5,
which are listed in Table III.
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